Question:

a. Sketch (by hand) the Nyquist plot of the following transfer function

$$G_2(s) = \frac{1}{s(s+10)(s+20)}$$

b. Compare your result in a. to the Nyquist plot obtained in Matlab (command nyquist).

Solution:

We find the magnitude and phase for $\omega \to \pm \infty$ and $\omega \to 0$ as follows.

- $\omega \to 0$: Magnitude goes to ∞ and phase goes to $\pm \pi/2$ (one pole at s=0)
- $\omega \to \infty$: Magnitude is 0 and phase goes to $-\pi$ (relative degree r=2)
- $\omega \to -\infty$: Magnitude is 0 and phase goes to $-3\pi/2$ (relative degree r=3)

For the pole at s=0 we use the small semi-circle $re^{j\varphi}$ and find that it maps to the large circle $G_2(re^{j\varphi}) \approx \frac{4}{10\cdot 20} \cdot \frac{1}{r} e^{-j\varphi}$ that closes from phase $\pi/2$ over phase 0 to phase $-\pi/2$ (clockwise)

